FP-Scanner:

The privacy implications of browser
fingerprint inconsistencies

A. Vastel, P. Laperdrix, W. Rudametkin, R. Rouvoy

Université 7,
de Lille lreeia—

inventeurs du monde numérique

Browser fingerprinting in a nutshell

Stateless tracking technique
Combination of attributes from the browser:

User agent: “Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/67.0.3396.87 Safari/537.36”

Screen resolution: “1280x720x24”

Canvas: Cwm fjordbank glyp-z, ©
Cwm fjordbank glyphs vext quiz, ©

Defense against fingerprinting

Different strategies:

- Script blocking: break collection

- Attribute blocking: decrease entropy

- Attribute switching with pre-existing values: break stability
- Attribute blurring: break stability

Different kinds of tools: browser extensions, forked browsers

Detecting countermeasures (1)

Fingerprinters may try to detect countermeasures:

- Augur st

- FingerprintJS2 "block}ngAds"ftrue,

- Security fingerprinting scripts "block}ngCook}les el
blockingJava":true,

"spoofed":true,

"usingDoNotTrack":false,
"incognito":false,
"tor":false,

Can be used as another fingerprinting attribute "bot":false

Detecting countermeasures (2)

Use inconsistencies introduced by the countermeasure (Nikiforakis2013)
Example with a naive user agent spoofer:

- Real configuration: Linux with Firefox

- navigator.userAgent = Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/60.0.3112.113 Safari/537.36

- navigator.platform = Linux x86_64

The user agent says Windows, the platform says Linux

FP-Scanner

Verify if attributes of a fingerprint have been modified
Extend to all kinds of countermeasures

Use inconsistencies introduced by countermeasures
Split into 4 components:

- OS, browser, device, canvas

OS inconsistencies

Verify OS extracted from the user agent with:

Navigator.platform

WebGL
oS Vendor
MacQOS Intel, ATI
Android | Qualcomm, ARM, Imagination

Browser inconsistencies (1)

Errors may be browser dependent:

Firefox Chrome
{ {
depth: 108421, depth: 11416,
errorMessage: "too much errorMessage: "Maximum call stack
recursion", size exceeded",
: "InternalError”, : "RangeError",
errorStacklength: 6912 errorStacklength: 1723

} }

Browser inconsistencies (2)

Browser features: depends on browser and version
Function representation: eval.toString()

- Safari and Firefox = "function eval() {

[native code]
}ll

- Chrome =» "function eval() { [native code] }"

Device inconsistencies

Is it really a computer or a smartphone?
Test the presence of events/sensors:

- Mouse on a phone: onmousemove
- Smartphone with no accelerometer

10

Canvas inconsistencies (1)

High entropy: depends on the device, browser, OS

High stability: important for tracking

Cwm fjordbank glyp ISR 2. ©
Cwm fjordbank glyphs vext quiz,

Canvas inconsistencies (2)

A human can detect a visual difference between the 2 canvas
Constraints when defining the canvas:

- Background should be transparent
- There should not be isolated pixels
- Pixels in the rectangle should be (255, 102, O, 100)

Verify if toDataURL and getlmageData overridden:

HTMLCanvasElement.prototype.toDataURL.toString();

12

Evaluation

Evaluation using 7 countermeasures:

- Canvas defender, Canvas FP Block, FP-Random (Canvas)
- Random Agent Spoofer, User agent spoofers
- Firefox protection, Brave

Compare with FingerprintJS2/Augur: verify OS, screen resolution, device, browser

Collect fingerprints with and without countermeasures from multiple devices

13

Results

Countermeasure

Random Agent Spoofer

User agent spoofers

Canvas Defender

Firefox protection

Canvas FP Block

FP-Random

Brave

No countermeasure

Accuracy FP-Scanner

Accuracy FP-JS2 / Augur

Tests failed by countermeasures

Random Agent Spoofer: No accelerometer, navigator.vendor overriden
Canvas extensions and FP-Random: Pixels and toDataURL overridden
Brave: navigator.mediaDevices.enumerateDevices

Firefox fingerprinting protection: WebGL and media queries

15

Recovering ground values

Infer the real nature of the device: OS, browser + version
Recovering the OS: combine plugin extensions, WebGL, media queries, fonts
Recovering the browser:

- Family: eval.toString().length and navigator.productSub
- Version: Modernizr features

Infer real OS and browser family, but not the precise version

16

Privacy implications

Discrimination: similar to what happens with anti-adblockers
Trackability: can make the user more easily trackable (multiple factors):

1. ldentify the countermeasure

2. Number of users

3. Ability to recover original values
4. Information leaked

Does the anonymity gain provided by the countermeasure
outweigh the anonymity loss caused by its detection?

17

Example: Canvas Defender (1)

Chrome and Firefox extension: =25k users
Randomize canvas by adding noise

Override toDataURL and getlmageData

) Cwm fjordbank glyp-z. @
Genuine Canvas: cym fiordbank glyphs vext quiz,

Cwm fjordbank glypSNERIRz, ©
Modified Canvas: P Fommedln s alle oolls pralias oo

18

Example: Canvas Defender (2)

> HTMLCanvasElement.prototype.toDataURL.toString();

"function () {
var width = this.width;
var height = this.height;
var context = this.getContext("2d");
var imageData = context.getImageData(@, O, width, height);

for (var i = 0; i < height; i++) {

}
context.putImageData(imageData, 9, 0);
showNotification();

return old.apply(this, arguments);

19

Example: Canvas Defender (3)

Clone original toDataURL before Canvas Defender executes its code

const getOriginalFunction = Function.prototype.call.bind(
Function.prototype.bind,
Function.prototype.call

)

const originalToDataURL =

getOriginalFunction(HTMLCanvasElement.prototype.toDataURL);

Execute original function after DOMContentLoaded so that emojis are rendered
correctly

20

Example: Canvas Defender (4)

Generate random noise vector (r, g, b, a)

=+ Add noise component to each pixel

Detect when Canvas Defender code is added to the DOM (MutationObserver):

- Extract the parameters of the function, i.e. the noise vector

21

Example: Canvas Defender (5)

Canvas Defender can be identified
Small number of users Y25k

=+ Being detected with Canvas Defender is discriminative in itself
Can recover original canvas value

Leaks a potentially stable identifier (noise vector)

22

Conclusion

Fingerprinters can detect countermeasures using inconsistencies
Privacy implications:

- Discrimination

- Tracking

Same techniques could also be used to detect extensions with different settings

23

